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Detecting Credit Card Fraud Using Machine Learning: A Comparative Analysis

of Classifiers on Imbalanced Data with SMOTE and Hyperparameter Tuning

1. - Introduction

In the era of digital commerce, credit card fraud remains one of the most persistent and costly
threats to the financial industry. In 2022 alone, the total value of credit card fraud exceeded
€1.2 billion (ECB and EBA, 2024), highlighting the vulnerability of online transactions. This
trend has worsened with the rise in popularity of digital payments and real-time payment
infrastructures, challenging the capacity of conventional rule-based systems to detect and
respond to evolving fraud patterns (Ngai et al., 2011). Machine learning (ML) offers a
compelling solution with its ability to detect anomalies, learn hidden patterns, and update
detection thresholds. However, fraud detection presents specific difficulties, most notably
extreme class imbalance, making accuracy a misleading metric. Hence, ML model
performance must be evaluated using metrics such as recall, precision, and Area Under the
Receiver Operating Characteristic Curve (AUC-ROC). This project builds and evaluates four ML
classifiers, Logistic Regression, XGBoost, Gaussian Naive Bayes, and Random Forest, on a
publicly available anonymised dataset of financial transactions. Such models integrate
Synthetic Minority Oversampling Technique (SMOTE) to rebalance the training data and use
GridSearchCV for model tuning. The report proceeds with a discussion of the dataset and
problem definition, followed by data preparation, model development, evaluation, and a final

reflective section on learning outcomes and methodological challenges.

2. - Dataset and Problem Definition

2.1. — Dataset Source and Features

The dataset, originally released by Worldline and the ULB Machine Learning Group at
Université Libre de Bruxelles (Kaggle, 2018), consists of 284,807 anonymised transactions
conducted by European cardholders over a two-day period. Comprising 30 numerical
variables where 28 features (V1-V28) are principal components transformed via PCA to
protect sensitive financial data, while the remaining two are “Time”, which is seconds elapsed

since the first transaction, and “Amount”, representing the transaction value in euros. The




target variable, “Class”, is binary, with “0” representative of legitimate transactions and “1”
indicating fraudulent ones. Of the total records, only 492 are fraudulent, which results in a
major class imbalance, with fraud cases constituting just 0.17% of all observations (Figure 2a).
Such imbalance makes many conventional algorithms ineffective unless properly addressed.
Moreover, interpretability is constrained due to the anonymisation of the features. Hence,
detection models must extract statistical patterns from the data rather than rely on

interpretable features.

Fraud vs Genuine Transactions Pie Chart
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Figure 2a — Pie Chart of Class Distribution (Fraudulent vs Genuine)

2.2. - Problem Description

The task is a binary supervised learning problem where transactions need to be accurately
classified as fraudulent or genuine based solely on anonymised numerical inputs. The rarity
of fraud events and the severe class imbalance is one of the central issues in financial anomaly
detection (Jurgovsky et al., 2018). Additionally, there is an asymmetric cost of
misclassification where false negatives (undetected fraud) carry significantly worse financial
and reputational consequences than false positives. Consequently, accuracy is an insufficient
metric, hence, the evaluation focuses on recall, which better capture the model’s ability to

detect rare yet highly important minority-class events.




3. Data Preparation and Exploration

3.1. — Exploratory Data Analysis

Exploratory analysis was conducted to understand the underlying structure and guide
subsequent preprocessing. A histogram of transaction amounts (Figure 3a) revealed a strong
right-skew, with the majority of values concentrated below €100 and a long tail extending
beyond €25,000. However, while such skew typically necessitates scaling, tree-based
algorithms are invariant to feature scales (Borisov et al., 2022), so no transformation was
applied.
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Figure 3a — Histogram of Transaction Amounts by Frequency

Next, a Pearson correlation matrix revealed that PCA-transformed features (V1-V28) showed
minimal linear correlation with the target variable (|r| <0.35), consistent with the
orthogonality imposed by dimensionality reduction. These relationships were below the |r|

> 0.5 threshold for strong linear dependence, so no action was necessary.

3.2. — Data Cleaning and Duplicate Handling
The dataset contained 1,081 duplicated rows, of which 19 were fraudulent transactions.
Given the class imbalance, retaining all fraud cases was a priority, therefore, duplicates were

removed only from the majority (genuine) class, with preservation of the minority (fraud)




class as the primary goal. This approach ensured data integrity while safeguarding the very
limited fraud signals. After this cleaning step, the dataset was reduced to 283,745 transactions
with the fraud class count remaining at 492. Notably, no missing values were detected, and
all variables were numeric, eliminating the need for imputation or encoding. The target
variable remained unaffected throughout the cleaning, ensuring fraud class distribution

remained consistent post-cleaning.

3.3 - Feature Handling and Train-Test Stratification
The non-PCA feature “Time” was removed due to its irrelevance in a static 48-hour snapshot
and risk of temporal overfitting. Moreover, the feature’s weak correlation with the target

(r=-0.012) further supports its exclusion.

A stratified 70:30 train-test split preserved the 0.17% fraud ratio in both subsets, preventing
evaluation bias. Stratification was important as random splitting could risk the exclusion of
rare fraud cases from training. This ensured that all models were evaluated against identical

class proportions, which allowed for fair comparison.

3.4 — Addressing Class Imbalance with SMOTE

To address the 0.17% fraud rate, SMOTE was applied to the training set after the splits were
complete. This technique synthesises new minority-class instances by interpolating feature
vectors from nearest neighbours (Chawla et al., 2002).. Fraud instances were upsampled to
10% of genuine transactions (sampling_strategy = 0.1) to avoid changing the class distribution
excessively. Implementation constituted k=2 nearest neighbours chosen to prevent
overfitting in a high-dimensional space. Post-SMOTE, the training set contained 198,277
genuine and 19,827 minority fraud samples, while the test set maintained the natural
distribution. While this approach helped mitigate bias toward the majority class, it also
introduced the risk of generating minority samples that may not reflect real-world fraud

dynamics.




4. Methodology and Model Building

4.1. — Model Selection and Justification

This project implemented four ML classifiers, Logistic Regression (LR), XGBoost (XGB),
Gaussian Naive Bayes (GNB), and Random Forest (RF), to detect fraudulent transactions in a
severely imbalanced dataset. Models were selected based on theoretical strengths and prior

success in handling high-dimensional and skewed data.

LR served as a baseline due to its proven success in fraud detection systems (Ngai et al., 2011).
The L2 penalty (default in scikit-learn) was retained to handle multicollinearity introduced by
PCA-transformed features, while maintaining auditability. Although it cannot model complex
non-linear relationships, its performance in high-dimensional PCA-transformed datasets is
strong, particularly when regularised. The max_iter = 1000 parameter was set to ensure

convergence over the feature space.

XGB was selected due to its high performance on tabular classification tasks. Unlike Random
Forest, which aggregates uncorrected trees in parallel, XGB builds trees sequentially,
correcting errors made in prior iterations. Its gradient boosting supports second-order
optimisation and regularisation, making it both accurate and resistant to overfitting (Chen
and Guestrin, 2016). Moreover, XGB’s capability to incorporate imbalance-aware learning
through parameters like “scale_pos_weight” makes it adept at addressing the challenges
introduced by the imbalanced distribution of fraudulent versus legitimate transactions
(Kabane, 2024). These attributes, combined with its scalability and widespread adoption in

financial anomaly detection, justified its inclusion in the model selection.

GNB was included as a lightweight generative benchmark to serve as a contrast to the more
complex ensemble models. It offers fast training, low memory usage, and competitive
performance on high-dimensional datasets when class separability is strong (Buczak and
Guven, 2016).. As Han et al. (2011) note, Bayesian classifiers provide a minimum theoretical
error rate under ideal conditions and offer a foundation for understanding probabilistic

learning, even if their assumptions do not always hold in practice. This made GNB an effective




baseline for evaluating the added value of more complex classifiers, such as XGBoost and

Random Forest, in fraud detection.

RF was selected for its robustness, interpretability, and proven success in fraud detection
tasks involving imbalanced, high-dimensional datasets. As an ensemble of decision trees
trained on bootstrap samples, RF is particularly effective at capturing complex feature
interactions without requiring extensive preprocessing (Breiman, 2001). Prior studies have
demonstrated RF’s resilience to overfitting and its stability across different sampling
strategies, including SMOTE (Bahnsen et al., 2016), making it ideal for the highly imbalanced
fraud classification task at hand. In this project it was further enhanced through
hyperparameter tuning using GridSearchCV, allowing class weights and tree depth to be

optimised for the skewed distribution of fraud cases.

4.2. — Hyperparameter Tuning
Hyperparameter tuning played an important role in improving model performance for the

task, especially given the risk of overfitting following SMOTE application.

For RF, the grid search conducted used a cost-sensitive 3-fold cross-validation opposed to 5-
fold, due to the size of the dataset. Parameters tuned include “max_depth” (set to 3 and 5)
to prevent overly complex trees, “min_samples_leaf” (5, 10) to control leaf node purity, and

“class_weight” to assign a higher penalty to misclassified fraud cases.

XGBoost utilised manual parameterisation, a trade-off made to increase the run-time speed
of the model. The “scale_pos_weight” (10) directly counteracted the large class imbalance
and reflected the post-SMOTE distribution, while conservative values for “max_depth” (2),
“learning_rate” (0.05) and “gamma” (0.3) reduced model complexity and regularised
learning. This approach reflects best practices in binary classification, where tuning must
balance sensitivity to minority patterns and generalisability to unseen data (Chen and
Guestrin, 2016). Notably, the decision threshold was adjusted to 0.9 after precision-recall

analysis showed this reduced false positives by 41% with only a 6% recall trade-off.




5. Results and Comparison

5.1. — Performance Overview
As previously mentioned, accuracy is rendered an insufficient metric with this dataset, hence,
the performance of models has been evaluated using recall, precision, and AUC-ROC. The

results are summarised below in Figure 5a.

| Model | Precision | Recall | FP |
| | | I |
| Logistic Regression | 0.525 | 0.791 | 106 |
| Random Forest | 0.498 | 0.750 | 112 |
| XGBoost (0.9 threshold) | 0.631 | 0.750 | 65 |
| GaussianNB | 0.056 | 0.777 | 1923 |

Figure 5a — Model Comparison Table (Precision, Recall, and False Positive Count)

LR achieved the highest recall (0.791), indicating strong sensitivity to fraud instances.
However, this did come at the cost of precision (0.525), producing 106 false positives. This
reflects a tendency to over-flag potential fraud, which would introduce additional operational

costs for checks, however, it may be acceptable in high-risk financial contexts.

XGB delivered the best precision (0.631) while maintaining good recall (0.750), resulting in
the fewest false positives (65). This suggests the best balance between fraud capture and false

alarm minimisation.

RF mirrored XGB'’s recall (0.750) but had significantly lower precision (0.498), generating more
false alarms (112). This was still strong and exhibits the ensemble method’s effectiveness at
capturing complex patterns, but suggests XGB’s gradient boosting better generalised under

SMOTE-induced oversampling.

In contrast, GNB underperformed significantly in precision (0.056), creating over 1,900 false
positives, despite a strong recall of 0.777. Its naive independence assumption likely negatively

impacted learning in a PCA-transformed feature space, where feature interactions are




encoded in orthogonal components. While conceptually valuable as a benchmark, its

application in real-world fraud settings would be impractical.

5.2. = ROC Curve Comparison

All models had strong AUC-ROC values, with LR and XGB both achieving 0.96, RF closely
followed at 0.95, and GNB trailed slightly at 0.94 (Figure 5b). These high scores suggest that
the models successfully discriminate between fraud and genuine classes, even with the
presence of synthetic oversampling. Notably, the ROC curves show an advantage for XGB and
LR in the low false positive rate region, which is particularly important in high-stakes

classification problems like fraud detection.

ROC Curve Comparison Across All Models
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Figure 5b — ROC Curve Comparison Diagram Across All Models

5.3. — Precision-Recall Curve Comparison

Precision-recall curves (Figure 5c) further illustrate the class sensitivity. XGB and RF exhibit
better average precision (0.65 and 0.66, respectively), while GNB flattens quickly, indicative
of early precision collapse. LR again outperforms on the recall-heavy segments, consistent
with its recall-centric performance. The combined PR plot affirms XGB’s proficiency in
retaining precision across a wide recall range, which justifies its use in areas that prioritise

both the reduction of fraud and alert fatigue minimisation.




Precision-Recall Curve Comparison Across All Models
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5.4. — Practitioner Recommendations

For the practical implementation of fraud detection systems, XGB is the most effective choice,
characterised by its strong precision, competitive recall, and low false positive rate, which
collectively minimise customer disruption while effectively detecting fraud. LR is
recommended when maximising recall is essential, although it may necessitate additional
filtering to address false positives. RF provides a reliable alternative, known for its consistent
performance, albeit with a decrease in computational efficiency. GNB performed poorly
overall despite the strong recall, as extremely low precision limits any practical utility. In fraud
detection, high recall is very important, but it’s also important to balance precision, since
excessive false positives can overload investigation teams and inconvenience customers

through card freezing.




6. Reflection on Challenges and Limitations

6.1. — Independent Development and Technical Growth

My approach for this project was to construct each aspect of the models independently, as |
plan to pursue a career in analytics post-graduation. My focus was on thoroughly
understanding the coding process rather than relying on Kaggle’s pre-existing code or
depending on Al tools. Hence, | implemented all components from scratch. While Al was used
sparingly to troubleshoot syntax issues, all conceptual understanding, design choices, and
coding logic were developed through self-learning. While extremely time-consuming, this

approach greatly assisted in building from the basics learned in semester one.

For instance, manually implementing SMOTE revealed how oversampling can distort feature
distributions if not carefully controlled, and debugging the stratified split showed me how
easily rare fraud cases can be lost in random sampling. These insights aren’t always obvious
when using pre-built code, and the struggle to solve these problems on my own gave me a

much deeper understanding of the nuances involved in building ML models.

6.2. — Model Performance

In reviewing model performance, | recognise my results, though competitive, did not reach
the same level as other publicly available solutions found in online repositories (Farayola,
2023; Garg, 2017; Rutecki, 2022a; Rutecki, 2022b). These sources frequently achieved near-
perfect recall through extensive hyperparameter tuning, ensembling, or hybrid resampling
methods. However, my goal was not to replicate these, but to build a solid, explainable system

with the use of my own code learning and understanding.

Designing my project to incorporate experimentation with both simple (LR, GNB) and complex
(XGB, RF) models allowed me to analyse how model structure can influence performance
under highly imbalanced data. One important insight gained was recognising the impact
synthetic data from SMOTE had on classifiers that assume feature independence, which

became apparent in GNB's disappointing precision despite high recall.

10




6.3. — Limitations and Future Directions

While building the fraud detection system from scratch strengthened my technical skills, |
recognise several limitations in hindsight. The fixed decision threshold on XGB of 0.9 improved
model performance results, but would be inadequate in a real-world setting, where fraud
patterns are constantly changing. A threshold that can adapt to new transaction trends would

be far more efficient in the long run.

Additionally, my SMOTE configuration was fixed at a 10% minority ratio. In future, | would
explore hybrid sampling techniques (e.g. SMOTE + Tomek links (Rutecki, 2022b)) or cost-
sensitive learning frameworks, which could help to mitigate the introduction of synthetic

noise in the high-dimensional PCA space.

Performance was analysed based on a single train/test split without the incorporation of any
probability calibration. In the future, implementation with a rolling-window cross-validation
could reveal temporal stability (Bergmeir and Benitez, 2012), and techniques like Platt scaling
or isotonic regression could ensure that predicted probabilities remain well-calibrated before

thresholding (Niculescu-Mizil and Caruana, 2005).

7. - Conclusion

This project did a comparative analysis of four machine learning classifiers to detect fraud in
a highly imbalanced dataset. The process went through data cleaning, targeted feature
handling, and the use of SMOTE and hyperparameter tuning, then each model was evaluated
on its ability to prioritise recall while minimising false alarms. XGBoost was the most balanced
performer, while Logistic Regression and Random Forest showed different strengths in recall
and interpretability. Gaussian Naive Bayes, though conceptually useful, did not perform well
comparatively and exhibited the risks of its overly simple assumptions in a high-dimensional
fraud problem. This experience emphasised the importance of understanding not only the
results produced by models but also the fundamental processes and compromises involved.
Future improvements could incorporate dynamic thresholding and more advanced ensemble

methods.
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Link to the code: HERE
Link to the dataset: HERE
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