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Detecting Credit Card Fraud Using Machine Learning: A Comparative Analysis 

of Classifiers on Imbalanced Data with SMOTE and Hyperparameter Tuning 

 

1.͏͏͏͏ -͏͏͏͏ Introduction 

In͏͏͏͏ the͏͏͏͏ era͏͏͏͏ of͏͏͏͏ digital͏͏͏͏ commerce,͏͏͏͏ credit͏͏͏͏ card͏͏͏͏ fraud͏͏͏͏ remains͏͏͏͏ one͏͏͏͏ of͏͏͏͏ the͏͏͏͏ most͏͏͏͏ persistent͏͏͏͏ and͏͏͏͏ costly͏͏͏͏ 

threats͏͏͏͏ to͏͏͏͏ the͏͏͏͏ financial͏͏͏͏ industry.͏͏͏͏ In͏͏͏͏ 2022͏͏͏͏͏͏ alone,͏͏͏͏ the͏͏͏͏ total͏͏͏͏ value͏͏͏͏ of͏͏͏͏ credit͏͏͏͏ card͏͏͏͏ fraud͏͏͏͏ exceeded͏͏͏͏ 

€1.2͏͏͏͏͏͏ billion͏͏͏͏ (ECB͏͏͏͏ and͏͏͏͏ EBA,͏͏͏͏ 2024),͏͏͏͏ highlighting͏͏͏͏ the͏͏͏͏ vulnerability͏͏͏͏ of͏͏͏͏ online͏͏͏͏ transactions.͏͏͏͏ This͏͏͏͏ 

trend͏͏͏͏ has͏͏͏͏ worsened͏͏͏͏ with͏͏͏͏ the͏͏͏͏ rise͏͏͏͏ in popularity of͏͏͏͏ digital payments and͏͏͏͏ real-time͏͏͏͏ payment͏͏͏͏ 

infrastructures,͏͏͏͏ challenging͏͏͏͏ the͏͏͏͏ capacity͏͏͏͏ of͏͏͏͏ conventional͏͏͏͏ rule-based͏͏͏͏ systems͏͏͏͏ to͏͏͏͏ detect͏͏͏͏ and͏͏͏͏ 

respond͏͏͏͏ to͏͏͏͏ evolving͏͏͏͏ fraud͏͏͏͏ patterns͏͏͏͏ (Ngai͏͏͏͏ et͏͏͏͏ al.,͏͏͏͏ 2011).͏͏͏͏ Machine͏͏͏͏ learning͏͏͏͏ (ML)͏͏͏͏ offers͏͏͏͏ a͏͏͏͏ 

compelling͏͏͏͏ solution͏͏͏͏ with͏͏͏͏ its͏͏͏͏ ability͏͏͏͏ to͏͏͏͏ detect͏͏͏͏ anomalies,͏͏͏͏ learn͏͏͏͏ hidden͏͏͏͏ patterns,͏͏͏͏ and͏͏͏͏ update͏͏͏͏ 

detection͏͏͏͏ thresholds.͏͏͏͏ However,͏͏͏͏ fraud͏͏͏͏ detection͏͏͏͏ presents͏͏͏͏ specific͏͏͏͏ difficulties,͏͏͏͏ most͏͏͏͏ notably͏͏͏͏ 

extreme͏͏͏͏ class͏͏͏͏ imbalance,͏͏͏͏ making͏͏͏͏ accuracy͏͏͏͏ a͏͏͏͏ misleading͏͏͏͏ metric.͏͏͏͏ Hence,͏͏͏͏ ML͏͏͏͏ model͏͏͏͏ 

performance͏͏͏͏ must͏͏͏͏ be͏͏͏͏ evaluated͏͏͏͏ using͏͏͏͏ metrics͏͏͏͏ such͏͏͏͏ as͏͏͏͏ recall,͏͏͏͏ precision, and͏͏͏͏ Area͏͏͏͏ Under͏͏͏͏ the͏͏͏͏ 

Receiver͏͏͏͏ Operating͏͏͏͏ Characteristic͏͏͏͏ Curve͏͏͏͏ (AUC-ROC).͏͏͏͏ This͏͏͏͏ project͏͏͏͏ builds͏͏͏͏ and͏͏͏͏ evaluates͏͏͏͏ four͏͏͏͏ ML͏͏͏͏ 

classifiers,͏͏͏͏ Logistic͏͏͏͏ Regression͏͏͏͏,͏͏͏͏ XGBoost͏͏͏͏,͏͏͏͏ Gaussian͏͏͏͏ Naïve͏͏͏͏ Bayes͏͏͏͏, and͏͏͏͏ Random͏͏͏͏ Forest͏͏͏͏,͏͏͏͏ on͏͏͏͏ a͏͏͏͏ 

publicly͏͏͏͏ available͏͏͏͏ anonymised͏͏͏͏ dataset͏͏͏͏ of͏͏͏͏ financial͏͏͏͏ transactions.͏͏͏͏ Such͏͏͏͏ models͏͏͏͏ integrate͏͏͏͏ 

Synthetic͏͏͏͏ Minority͏͏͏͏ Oversampling͏͏͏͏ Technique͏͏͏͏ (SMOTE)͏͏͏͏ to͏͏͏͏ rebalance͏͏͏͏ the͏͏͏͏ training͏͏͏͏ data͏͏͏͏ and͏͏͏͏ use͏͏͏͏ 

GridSearchCV͏͏͏͏ for͏͏͏͏ model͏͏͏͏ tuning.͏͏͏͏ The͏͏͏͏ report͏͏͏͏ proceeds͏͏͏͏ with͏͏͏͏ a͏͏͏͏ discussion͏͏͏͏ of͏͏͏͏ the͏͏͏͏ dataset͏͏͏͏ and͏͏͏͏ 

problem͏͏͏͏ definition,͏͏͏͏ followed͏͏͏͏ by͏͏͏͏ data͏͏͏͏ preparation,͏͏͏͏ model͏͏͏͏ development,͏͏͏͏ evaluation,͏͏͏͏ and͏͏͏͏ a͏͏͏͏ final͏͏͏͏ 

reflective͏͏͏͏ section͏͏͏͏ on͏͏͏͏ learning͏͏͏͏ outcomes͏͏͏͏ and͏͏͏͏ methodological͏͏͏͏ challenges. 

 

2.͏͏͏͏ -͏͏͏͏ Dataset͏͏͏͏ and͏͏͏͏ Problem͏͏͏͏ Definition 

 

2.1.͏͏͏͏ –͏͏͏͏ Dataset͏͏͏͏ Source͏͏͏͏ and͏͏͏͏ Features 

The͏͏͏͏ dataset,͏͏͏͏ originally͏͏͏͏ released͏͏͏͏ by͏͏͏͏ Worldline͏͏͏͏ and͏͏͏͏ the͏͏͏͏ ULB͏͏͏͏ Machine͏͏͏͏ Learning͏͏͏͏ Group͏͏͏͏ at͏͏͏͏ 

Université͏͏͏͏ Libre͏͏͏͏ de͏͏͏͏ Bruxelles͏͏͏͏ (Kaggle,͏͏͏͏ 2018),͏͏͏͏ consists͏͏͏͏ of͏͏͏͏ 284,807͏͏͏͏͏͏ anonymised͏͏͏͏ transactions͏͏͏͏ 

conducted͏͏͏͏ by͏͏͏͏ European͏͏͏͏ cardholders͏͏͏͏ over͏͏͏͏ a͏͏͏͏ two-day͏͏͏͏ period.͏͏͏͏ Comprising͏͏͏͏ 30͏͏͏͏͏͏ numerical͏͏͏͏ 

variables͏͏͏͏ where͏͏͏͏ 28͏͏͏͏͏͏ features͏͏͏͏ (V1-V28)͏͏͏͏ are͏͏͏͏ principal͏͏͏͏ components͏͏͏͏ transformed͏͏͏͏ via͏͏͏͏ PCA͏͏͏͏ to͏͏͏͏ 

protect͏͏͏͏ sensitive͏͏͏͏ financial͏͏͏͏ data,͏͏͏͏ while͏͏͏͏ the͏͏͏͏ remaining͏͏͏͏ two͏͏͏͏ are͏͏͏͏ “Time”,͏͏͏͏ which͏͏͏͏ is͏͏͏͏ seconds͏͏͏͏ elapsed͏͏͏͏ 

since͏͏͏͏ the͏͏͏͏ first͏͏͏͏ transaction,͏͏͏͏ and͏͏͏͏ “Amount”,͏͏͏͏ representing͏͏͏͏ the͏͏͏͏ transaction͏͏͏͏ value͏͏͏͏ in͏͏͏͏ euros.͏͏͏͏ The͏͏͏͏ 
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target͏͏͏͏ variable,͏͏͏͏ “Class”,͏͏͏͏ is͏͏͏͏ binary,͏͏͏͏ with͏͏͏͏ “0͏͏”͏͏͏͏ representative͏͏͏͏ of͏͏͏͏ legitimate͏͏͏͏ transactions͏͏͏͏ and͏͏͏͏ “1”͏͏͏͏ 

indicating͏͏͏͏ fraudulent͏͏͏͏ ones.͏͏͏͏ Of͏͏͏͏ the͏͏͏͏ total͏͏͏͏ records,͏͏͏͏ only͏͏͏͏ 492͏͏͏͏͏͏ are͏͏͏͏ fraudulent,͏͏͏͏ which͏͏͏͏ results͏͏͏͏ in͏͏͏͏ a͏͏͏͏ 

major͏͏͏͏ class͏͏͏͏ imbalance,͏͏͏͏ with͏͏͏͏ fraud͏͏͏͏ cases͏͏͏͏ constituting͏͏͏͏ just͏͏͏͏ 0.17%͏͏͏͏ of͏͏͏͏ all͏͏͏͏ observations͏͏͏͏ (Figure͏͏͏͏ 2a).͏͏͏͏ 

Such͏͏͏͏ imbalance͏͏͏͏ makes͏͏͏͏ many͏͏͏͏ conventional͏͏͏͏ algorithms͏͏͏͏ ineffective͏͏͏͏ unless͏͏͏͏ properly͏͏͏͏ addressed.͏͏͏͏ 

Moreover,͏͏͏͏ interpretability͏͏͏͏ is͏͏͏͏ constrained͏͏͏͏ due͏͏͏͏ to͏͏͏͏ the͏͏͏͏ anonymisation͏͏͏͏ of͏͏͏͏ the͏͏͏͏ features.͏͏͏͏ Hence,͏͏͏͏ 

detection͏͏͏͏ models͏͏͏͏ must͏͏͏͏ extract͏͏͏͏ statistical͏͏͏͏ patterns͏͏͏͏ from͏͏͏͏ the͏͏͏͏ data͏͏͏͏ rather͏͏͏͏ than͏͏͏͏ rely͏͏͏͏ on͏͏͏͏ 

interpretable͏͏͏͏ features. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure͏͏͏͏ 2a͏͏͏͏ –͏͏͏͏ Pie͏͏͏͏ Chart͏͏͏͏ of͏͏͏͏ Class͏͏͏͏ Distribution͏͏͏͏ (Fraudulent͏͏͏͏ vs͏͏͏͏ Genuine) 

 

2.2.͏͏͏͏ –͏͏͏͏ Problem͏͏͏͏ Description 

The͏͏͏͏ task͏͏͏͏ is͏͏͏͏ a͏͏͏͏ binary͏͏͏͏ supervised͏͏͏͏ learning͏͏͏͏ problem͏͏͏͏ where͏͏͏͏ transactions͏͏͏͏ need͏͏͏͏ to͏͏͏͏ be͏͏͏͏ accurately͏͏͏͏ 

classified͏͏͏͏ as͏͏͏͏ fraudulent͏͏͏͏ or͏͏͏͏ genuine͏͏͏͏ based͏͏͏͏ solely͏͏͏͏ on͏͏͏͏ anonymised͏͏͏͏ numerical͏͏͏͏ inputs.͏͏͏͏ The͏͏͏͏ rarity͏͏͏͏ 

of͏͏͏͏ fraud͏͏͏͏ events͏͏͏͏ and͏͏͏͏ the͏͏͏͏ severe͏͏͏͏ class͏͏͏͏ imbalance͏͏͏͏ is͏͏͏͏ one͏͏͏͏ of͏͏͏͏ the͏͏͏͏ central͏͏͏͏ issues͏͏͏͏ in͏͏͏͏ financial͏͏͏͏ anomaly͏͏͏͏ 

detection͏͏͏͏ (Jurgovsky͏͏͏͏ et͏͏͏͏ al.,͏͏͏͏ 2018).͏͏͏͏ Additionally,͏͏͏͏ there͏͏͏͏ is͏͏͏͏ an͏͏͏͏ asymmetric͏͏͏͏ cost͏͏͏͏ of͏͏͏͏ 

misclassification͏͏͏͏ where͏͏͏͏ false͏͏͏͏ negatives͏͏͏͏ (undetected͏͏͏͏ fraud)͏͏͏͏ carry͏͏͏͏ significantly͏͏͏͏ worse͏͏͏͏ financial͏͏͏͏ 

and͏͏͏͏ reputational͏͏͏͏ consequences͏͏͏͏ than͏͏͏͏ false͏͏͏͏ positives.͏͏͏͏ Consequently,͏͏͏͏ accuracy͏͏͏͏ is͏͏͏͏ an͏͏͏͏ insufficient͏͏͏͏ 

metric,͏͏͏͏ hence,͏͏͏͏ the͏͏͏͏ evaluation͏͏͏͏ focuses͏͏͏͏ on͏͏͏͏ recall,͏͏͏͏ which͏͏͏͏ better͏͏͏͏ capture͏͏͏͏ the͏͏͏͏ model’s͏͏͏͏ ability͏͏͏͏ to͏͏͏͏ 

detect͏͏͏͏ rare͏͏͏͏ yet͏͏͏͏ highly͏͏͏͏ important͏͏͏͏ minority-class͏͏͏͏ events. 
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3.͏͏͏͏ Data͏͏͏͏ Preparation͏͏͏͏ and͏͏͏͏ Exploration 

 

3.1.͏͏͏͏ –͏͏͏͏ Exploratory͏͏͏͏ Data͏͏͏͏ Analysis 

Exploratory͏͏͏͏ analysis͏͏͏͏ was͏͏͏͏ conducted͏͏͏͏ to͏͏͏͏ understand͏͏͏͏ the͏͏͏͏ underlying͏͏͏͏ structure͏͏͏͏ and͏͏͏͏ guide͏͏͏͏ 

subsequent͏͏͏͏ preprocessing.͏͏͏͏ A͏͏͏͏ histogram͏͏͏͏ of͏͏͏͏ transaction͏͏͏͏ amounts͏͏͏͏ (Figure͏͏͏͏ 3a)͏͏͏͏ revealed͏͏͏͏ a͏͏͏͏ strong͏͏͏͏ 

right-skew,͏͏͏͏ with͏͏͏͏ the͏͏͏͏ majority͏͏͏͏ of͏͏͏͏ values͏͏͏͏ concentrated͏͏͏͏ below͏͏͏͏ €10͏͏0͏͏͏͏͏͏ and͏͏͏͏ a͏͏͏͏ long͏͏͏͏ tail͏͏͏͏ extending͏͏͏͏ 

beyond͏͏͏͏ €2͏͏5,0͏͏0͏͏0͏͏.͏͏͏͏ However, while such skew typically necessitates scaling, tree-based 

algorithms are invariant to feature scales (Borisov et al., 2022), so no transformation was 

applied. 

 

 

 

 

 

 

 

 

 

 

 

Figure͏͏͏͏ 3a͏͏͏͏ –͏͏͏͏ Histogram͏͏͏͏ of͏͏͏͏ Transaction͏͏͏͏ Amounts͏͏͏͏ by͏͏͏͏ Frequency 

 

Next,͏͏͏͏ a͏͏͏͏ Pearson͏͏͏͏ correlation͏͏͏͏ matrix͏͏͏͏ revealed͏͏͏͏ that͏͏͏͏ PCA-transformed͏͏͏͏ features͏͏͏͏ (V1-V28)͏͏͏͏ showed͏͏͏͏ 

minimal͏͏͏͏ linear͏͏͏͏ correlation͏͏͏͏ with͏͏͏͏ the͏͏͏͏ target͏͏͏͏ variable͏͏͏͏ (|r|͏͏͏͏ <0.35),͏͏͏͏ consistent͏͏͏͏ with͏͏͏͏ the͏͏͏͏ 

orthogonality͏͏͏͏ imposed͏͏͏͏ by͏͏͏͏ dimensionality͏͏͏͏ reduction.͏͏͏͏ These͏͏͏͏ relationships͏͏͏͏ were͏͏͏͏ below͏͏͏͏ the͏͏͏͏ |r|͏͏͏͏ 

>͏͏͏͏ 0.5͏͏͏͏ threshold͏͏͏͏ for͏͏͏͏ strong͏͏͏͏ linear͏͏͏͏ dependence,͏͏͏͏ so͏͏͏͏ no͏͏͏͏ action͏͏͏͏ was͏͏͏͏ necessary. 

 

3.2.͏͏͏͏ –͏͏͏͏ Data͏͏͏͏ Cleaning͏͏͏͏ and͏͏͏͏ Duplicate͏͏͏͏ Handling 

The͏͏͏͏ dataset͏͏͏͏ contained͏͏͏͏ 1,081͏͏͏͏ duplicated͏͏͏͏ rows,͏͏͏͏ of͏͏͏͏ which͏͏͏͏ 19͏͏͏͏͏͏ were͏͏͏͏ fraudulent͏͏͏͏ transactions.͏͏͏͏ 

Given͏͏͏͏ the͏͏͏͏ class͏͏͏͏ imbalance,͏͏͏͏ retaining͏͏͏͏ all͏͏͏͏ fraud͏͏͏͏ cases͏͏͏͏ was͏͏͏͏ a͏͏͏͏ priority,͏͏͏͏ therefore,͏͏͏͏ duplicates͏͏͏͏ were͏͏͏͏ 

removed͏͏͏͏ only͏͏͏͏ from͏͏͏͏ the͏͏͏͏ majority͏͏͏͏ (genuine)͏͏͏͏ class,͏͏͏͏ with͏͏͏͏ preservation͏͏͏͏ of͏͏͏͏ the͏͏͏͏ minority͏͏͏͏ (fraud)͏͏͏͏ 
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class͏͏͏͏ as͏͏͏͏ the͏͏͏͏ primary͏͏͏͏ goal.͏͏͏͏ This͏͏͏͏ approach͏͏͏͏ ensured͏͏͏͏ data͏͏͏͏ integrity͏͏͏͏ while͏͏͏͏ safeguarding͏͏͏͏ the͏͏͏͏ very͏͏͏͏ 

limited͏͏͏͏ fraud͏͏͏͏ signals.͏͏͏͏ After͏͏͏͏ this͏͏͏͏ cleaning͏͏͏͏ step,͏͏͏͏ the͏͏͏͏ dataset͏͏͏͏ was͏͏͏͏ reduced͏͏͏͏ to͏͏͏͏ 283,745͏͏͏͏ transactions͏͏͏͏ 

with͏͏͏͏ the͏͏͏͏ fraud͏͏͏͏ class͏͏͏͏ count͏͏͏͏ remaining͏͏͏͏ at͏͏͏͏ 492.͏͏͏͏ Notably, no͏͏͏͏ missing͏͏͏͏ values͏͏͏͏ were͏͏͏͏ detected,͏͏͏͏ and͏͏͏͏ 

all͏͏͏͏ variables͏͏͏͏ were͏͏͏͏ numeric,͏͏͏͏ eliminating͏͏͏͏ the͏͏͏͏ need͏͏͏͏ for͏͏͏͏ imputation͏͏͏͏ or͏͏͏͏ encoding.͏͏͏͏ The͏͏͏͏ target͏͏͏͏ 

variable͏͏͏͏ remained͏͏͏͏ unaffected͏͏͏͏ throughout͏͏͏͏ the͏͏͏͏ cleaning,͏͏͏͏ ensuring͏͏͏͏ fraud͏͏͏͏ class͏͏͏͏ distribution͏͏͏͏ 

remained͏͏͏͏ consistent͏͏͏͏ post-cleaning. 

 

3.3͏͏͏͏͏͏ –͏͏͏͏ Feature͏͏͏͏ Handling͏͏͏͏ and͏͏͏͏ Train-Test͏͏͏͏ Stratification 

The͏͏͏͏ non-PCA͏͏͏͏ feature͏͏͏͏ “Time”͏͏͏͏ was͏͏͏͏ removed͏͏͏͏ due͏͏͏͏ to͏͏͏͏ its͏͏͏͏ irrelevance͏͏͏͏ in͏͏͏͏ a͏͏͏͏ static͏͏͏͏ 48-hour͏͏͏͏ snapshot͏͏͏͏ 

and͏͏͏͏ risk͏͏͏͏ of͏͏͏͏ temporal͏͏͏͏ overfitting.͏͏͏͏ Moreover,͏͏͏͏ the͏͏͏͏ feature’s͏͏͏͏ weak͏͏͏͏ correlation͏͏͏͏ with͏͏͏͏ the͏͏͏͏ target͏͏͏͏͏͏͏͏͏͏͏͏͏͏͏͏͏͏͏͏͏͏͏͏͏͏͏͏͏͏͏͏͏͏͏͏͏͏͏͏͏͏͏͏͏͏͏͏͏͏͏͏ 

(r͏͏͏͏ =͏͏͏͏ -0.012)͏͏͏͏ further͏͏͏͏ supports͏͏͏͏ its͏͏͏͏ exclusion.͏͏͏͏  

 

A͏͏͏͏ stratified͏͏͏͏ 70:30͏͏͏͏͏͏ train-test͏͏͏͏ split͏͏͏͏ preserved͏͏͏͏ the͏͏͏͏ 0.17%͏͏͏͏ fraud͏͏͏͏ ratio͏͏͏͏ in͏͏͏͏ both͏͏͏͏ subsets,͏͏͏͏ preventing͏͏͏͏ 

evaluation͏͏͏͏ bias.͏͏͏͏ Stratification͏͏͏͏ was͏͏͏͏ important͏͏͏͏ as͏͏͏͏ random͏͏͏͏ splitting͏͏͏͏ could͏͏͏͏ risk͏͏͏͏ the͏͏͏͏ exclusion͏͏͏͏ of͏͏͏͏ 

rare͏͏͏͏ fraud͏͏͏͏ cases͏͏͏͏ from͏͏͏͏ training.͏͏͏͏ This͏͏͏͏ ensured͏͏͏͏ that͏͏͏͏ all͏͏͏͏ models͏͏͏͏ were͏͏͏͏ evaluated͏͏͏͏ against͏͏͏͏ identical͏͏͏͏ 

class͏͏͏͏ proportions,͏͏͏͏ which͏͏͏͏ allowed͏͏͏͏ for͏͏͏͏ fair͏͏͏͏ comparison. 

 

3.4͏͏͏͏͏͏ –͏͏͏͏ Addressing͏͏͏͏ Class͏͏͏͏ Imbalance with SMOTE 

To͏͏͏͏ address͏͏͏͏ the͏͏͏͏ 0.17%͏͏͏͏ fraud͏͏͏͏ rate,͏͏͏͏ SMOTE͏͏͏͏ was͏͏͏͏ applied͏͏͏͏ to͏͏͏͏ the͏͏͏͏ training͏͏͏͏ set͏͏͏͏ after͏͏͏͏ the͏͏͏͏ splits͏͏͏͏ were͏͏͏͏ 

complete.͏͏͏͏ This͏͏͏͏ technique͏͏͏͏ synthesises͏͏͏͏ new͏͏͏͏ minority-class͏͏͏͏ instances͏͏͏͏ by͏͏͏͏ interpolating͏͏͏͏ feature͏͏͏͏ 

vectors͏͏͏͏ from͏͏͏͏ nearest͏͏͏͏ neighbours͏͏͏͏ (Chawla͏͏͏͏ et͏͏͏͏ al.,͏͏͏͏ 2002)..͏͏͏͏ Fraud͏͏͏͏ instances͏͏͏͏ were͏͏͏͏ upsampled͏͏͏͏ to͏͏͏͏ 

10%͏͏͏͏ of͏͏͏͏ genuine͏͏͏͏ transactions͏͏͏͏ (sampling_strategy͏͏͏͏ =͏͏͏͏ 0.1)͏͏͏͏ to͏͏͏͏ avoid͏͏͏͏ changing͏͏͏͏ the͏͏͏͏ class͏͏͏͏ distribution͏͏͏͏ 

excessively.͏͏͏͏ Implementation͏͏͏͏ constituted͏͏͏͏ k=2͏͏͏͏͏͏ nearest͏͏͏͏ neighbours͏͏͏͏ chosen͏͏͏͏ to͏͏͏͏ prevent͏͏͏͏ 

overfitting͏͏͏͏ in͏͏͏͏ a͏͏͏͏ high-dimensional͏͏͏͏ space.͏͏͏͏ Post-SMOTE,͏͏͏͏ the͏͏͏͏ training͏͏͏͏ set͏͏͏͏ contained͏͏͏͏ 198,277͏͏͏͏͏͏ 

genuine͏͏͏͏ and͏͏͏͏ 19,827͏͏͏͏͏͏ minority fraud͏͏͏͏ samples,͏͏͏͏ while͏͏͏͏ the͏͏͏͏ test͏͏͏͏ set͏͏͏͏ maintained͏͏͏͏ the͏͏͏͏ natural͏͏͏͏ 

distribution.͏͏͏͏ While this approach helped mitigate bias toward the majority class, it also 

introduced the risk of generating minority samples that may not reflect real-world fraud 

dynamics. 
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4.͏͏͏͏ Methodology͏͏͏͏ and͏͏͏͏ Model͏͏͏͏ Building 

 

4.1.͏͏͏͏ –͏͏͏͏ Model͏͏͏͏ Selection͏͏͏͏ and͏͏͏͏ Justification 

This͏͏͏͏ project͏͏͏͏ implemented͏͏͏͏ four͏͏͏͏ ML͏͏͏͏ classifiers,͏͏͏͏ Logistic͏͏͏͏ Regression͏͏͏͏ (LR),͏͏͏͏ XGBoost͏͏͏͏ (XGB),͏͏͏͏ 

Gaussian͏͏͏͏ Naïve͏͏͏͏ Bayes͏͏͏͏ (GNB),͏͏͏͏ and͏͏͏͏ Random͏͏͏͏ Forest͏͏͏͏ (RF),͏͏͏͏ to͏͏͏͏ detect͏͏͏͏ fraudulent͏͏͏͏ transactions͏͏͏͏ in͏͏͏͏ a͏͏͏͏ 

severely͏͏͏͏ imbalanced͏͏͏͏ dataset.͏͏͏͏ Models͏͏͏͏ were͏͏͏͏ selected͏͏͏͏ based͏͏͏͏ on͏͏͏͏ theoretical͏͏͏͏ strengths͏͏͏͏ and͏͏͏͏ prior͏͏͏͏ 

success͏͏͏͏ in͏͏͏͏ handling͏͏͏͏ high-dimensional͏͏͏͏ and͏͏͏͏ skewed͏͏͏͏ data. 

 

LR͏͏͏͏ served͏͏͏͏ as͏͏͏͏ a͏͏͏͏ baseline͏͏͏͏ due͏͏͏͏ to͏͏͏͏ its͏͏͏͏ proven͏͏͏͏ success͏͏͏͏ in͏͏͏͏ fraud͏͏͏͏ detection͏͏͏͏ systems͏͏͏͏ (Ngai͏͏͏͏ et͏͏͏͏ al.,͏͏͏͏ 2011).͏͏͏͏ 

The͏͏͏͏ L2͏͏͏͏͏͏ penalty͏͏͏͏ (default͏͏͏͏ in͏͏͏͏ scikit-learn)͏͏͏͏ was͏͏͏͏ retained͏͏͏͏ to͏͏͏͏ handle͏͏͏͏ multicollinearity͏͏͏͏ introduced͏͏͏͏ by͏͏͏͏ 

PCA-transformed͏͏͏͏ features,͏͏͏͏ while͏͏͏͏ maintaining͏͏͏͏ auditability.͏͏͏͏ Although͏͏͏͏ it͏͏͏͏ cannot͏͏͏͏ model͏͏͏͏ complex͏͏͏͏ 

non-linear͏͏͏͏ relationships,͏͏͏͏ its͏͏͏͏ performance͏͏͏͏ in͏͏͏͏ high-dimensional͏͏͏͏ PCA-transformed͏͏͏͏ datasets͏͏͏͏ is͏͏͏͏ 

strong,͏͏͏͏ particularly͏͏͏͏ when͏͏͏͏ regularised.͏͏͏͏ The͏͏͏͏ max_iter͏͏͏͏ =͏͏͏͏ 1000͏͏͏͏͏͏ parameter͏͏͏͏ was͏͏͏͏ set͏͏͏͏ to͏͏͏͏ ensure͏͏͏͏ 

convergence͏͏͏͏ over͏͏͏͏ the͏͏͏͏ feature͏͏͏͏ space. 

 

XGB͏͏͏͏ was͏͏͏͏ selected͏͏͏͏ due͏͏͏͏ to͏͏͏͏ its͏͏͏͏ high͏͏͏͏ performance͏͏͏͏ on͏͏͏͏ tabular͏͏͏͏ classification͏͏͏͏ tasks.͏͏͏͏͏͏͏͏͏͏ Unlike͏͏͏͏ Random͏͏͏͏ 

Forest,͏͏͏͏ which͏͏͏͏ aggregates͏͏͏͏ uncorrected͏͏͏͏ trees͏͏͏͏ in͏͏͏͏ parallel,͏͏͏͏ XGB͏͏͏͏ builds͏͏͏͏ trees͏͏͏͏ sequentially,͏͏͏͏ 

correcting͏͏͏͏ errors͏͏͏͏ made͏͏͏͏ in͏͏͏͏ prior͏͏͏͏ iterations.͏͏͏͏ Its͏͏͏͏ gradient͏͏͏͏ boosting͏͏͏͏ supports͏͏͏͏ second-order͏͏͏͏ 

optimisation͏͏͏͏ and͏͏͏͏ regularisation,͏͏͏͏ making͏͏͏͏ it͏͏͏͏ both͏͏͏͏ accurate͏͏͏͏ and͏͏͏͏ resistant͏͏͏͏ to͏͏͏͏ overfitting͏͏͏͏ (Chen͏͏͏͏ 

and͏͏͏͏ Guestrín,͏͏͏͏ 2016).͏͏͏͏ Moreover,͏͏͏͏ XGB’s͏͏͏͏ capability͏͏͏͏ to͏͏͏͏ incorporate͏͏͏͏ imbalance-aware͏͏͏͏ learning͏͏͏͏ 

through͏͏͏͏ parameters͏͏͏͏ like͏͏͏͏ “scale_pos_weight”͏͏͏͏ makes͏͏͏͏ it͏͏͏͏ adept͏͏͏͏ at͏͏͏͏ addressing͏͏͏͏ the͏͏͏͏ challenges͏͏͏͏ 

introduced͏͏͏͏ by͏͏͏͏ the͏͏͏͏ imbalanced͏͏͏͏ distribution͏͏͏͏ of͏͏͏͏ fraudulent͏͏͏͏ versus͏͏͏͏ legitimate͏͏͏͏ transactions͏͏͏͏ 

(Kabane,͏͏͏͏ 2024).͏͏͏͏ These͏͏͏͏ attributes,͏͏͏͏ combined͏͏͏͏ with͏͏͏͏ its͏͏͏͏ scalability͏͏͏͏ and͏͏͏͏ widespread͏͏͏͏ adoption͏͏͏͏ in͏͏͏͏ 

financial͏͏͏͏ anomaly͏͏͏͏ detection,͏͏͏͏ justified͏͏͏͏ its͏͏͏͏ inclusion͏͏͏͏ in͏͏͏͏ the͏͏͏͏ model͏͏͏͏ selection. 

 

GNB͏͏͏͏ was͏͏͏͏ included͏͏͏͏ as͏͏͏͏ a͏͏͏͏ lightweight͏͏͏͏ generative benchmark to͏͏͏͏ serve͏͏͏͏ as͏͏͏͏ a͏͏͏͏ contrast͏͏͏͏ to͏͏͏͏ the͏͏͏͏ more͏͏͏͏ 

complex͏͏͏͏ ensemble͏͏͏͏ models.͏͏͏͏ It͏͏͏͏ offers͏͏͏͏ fast͏͏͏͏ training,͏͏͏͏ low͏͏͏͏ memory͏͏͏͏ usage,͏͏͏͏ and͏͏͏͏ competitive͏͏͏͏ 

performance͏͏͏͏ on͏͏͏͏ high-dimensional͏͏͏͏ datasets͏͏͏͏ when͏͏͏͏ class͏͏͏͏ separability͏͏͏͏ is͏͏͏͏ strong͏͏͏͏͏͏͏͏͏͏ (Buczak͏͏͏͏ and͏͏͏͏ 

Guven,͏͏͏͏ 2016).͏͏͏͏.͏͏͏͏ As͏͏͏͏ Han͏͏͏͏ et͏͏͏͏ al.͏͏͏͏ (2011)͏͏͏͏ note,͏͏͏͏ Bayesian͏͏͏͏ classifiers͏͏͏͏ provide͏͏͏͏ a͏͏͏͏ minimum͏͏͏͏ theoretical͏͏͏͏ 

error͏͏͏͏ rate͏͏͏͏ under͏͏͏͏ ideal͏͏͏͏ conditions͏͏͏͏ and͏͏͏͏ offer͏͏͏͏ a͏͏͏͏ foundation͏͏͏͏ for͏͏͏͏ understanding͏͏͏͏ probabilistic͏͏͏͏ 

learning,͏͏͏͏ even͏͏͏͏ if͏͏͏͏ their͏͏͏͏ assumptions͏͏͏͏ do͏͏͏͏ not͏͏͏͏ always͏͏͏͏ hold͏͏͏͏ in͏͏͏͏ practice.͏͏͏͏ This͏͏͏͏ made͏͏͏͏ GNB͏͏͏͏ an͏͏͏͏ effective͏͏͏͏ 
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baseline͏͏͏͏ for͏͏͏͏ evaluating͏͏͏͏ the͏͏͏͏ added͏͏͏͏ value͏͏͏͏ of͏͏͏͏ more͏͏͏͏ complex͏͏͏͏ classifiers,͏͏͏͏ such͏͏͏͏ as͏͏͏͏ XGBoost͏͏͏͏ and͏͏͏͏ 

Random͏͏͏͏ Forest,͏͏͏͏ in͏͏͏͏ fraud͏͏͏͏ detection. 

 

RF͏͏͏͏ was͏͏͏͏ selected͏͏͏͏ for͏͏͏͏ its͏͏͏͏ robustness,͏͏͏͏ interpretability,͏͏͏͏ and͏͏͏͏ proven͏͏͏͏ success͏͏͏͏ in͏͏͏͏ fraud͏͏͏͏ detection͏͏͏͏ 

tasks͏͏͏͏ involving͏͏͏͏ imbalanced,͏͏͏͏ high-dimensional͏͏͏͏ datasets.͏͏͏͏ As͏͏͏͏ an͏͏͏͏ ensemble͏͏͏͏ of͏͏͏͏ decision͏͏͏͏ trees͏͏͏͏ 

trained͏͏͏͏ on͏͏͏͏ bootstrap͏͏͏͏ samples,͏͏͏͏ RF͏͏͏͏ is͏͏͏͏ particularly͏͏͏͏ effective͏͏͏͏ at͏͏͏͏ capturing͏͏͏͏ complex͏͏͏͏ feature͏͏͏͏ 

interactions͏͏͏͏ without͏͏͏͏ requiring͏͏͏͏ extensive͏͏͏͏ preprocessing͏͏͏͏ (Breiman,͏͏͏͏ 2001).͏͏͏͏ Prior͏͏͏͏ studies͏͏͏͏ have͏͏͏͏ 

demonstrated͏͏͏͏ RF’s͏͏͏͏ resilience͏͏͏͏ to͏͏͏͏ overfitting͏͏͏͏ and͏͏͏͏ its͏͏͏͏ stability͏͏͏͏ across͏͏͏͏ different͏͏͏͏ sampling͏͏͏͏ 

strategies,͏͏͏͏ including͏͏͏͏ SMOTE͏͏͏͏ (Bahnsen͏͏͏͏ et͏͏͏͏ al.,͏͏͏͏ 2016),͏͏͏͏ making͏͏͏͏ it͏͏͏͏ ideal͏͏͏͏ for͏͏͏͏ the͏͏͏͏ highly͏͏͏͏ imbalanced͏͏͏͏ 

fraud͏͏͏͏ classification͏͏͏͏ task͏͏͏͏ at͏͏͏͏ hand.͏͏͏͏ In͏͏͏͏ this͏͏͏͏ project it͏͏͏͏ was͏͏͏͏ further͏͏͏͏ enhanced͏͏͏͏ through͏͏͏͏ 

hyperparameter͏͏͏͏ tuning͏͏͏͏ using͏͏͏͏ GridSearchCV,͏͏͏͏ allowing͏͏͏͏ class͏͏͏͏ weights͏͏͏͏ and͏͏͏͏ tree͏͏͏͏ depth͏͏͏͏ to͏͏͏͏ be͏͏͏͏ 

optimised͏͏͏͏ for͏͏͏͏ the͏͏͏͏ skewed͏͏͏͏ distribution͏͏͏͏ of͏͏͏͏ fraud͏͏͏͏ cases.͏͏͏͏ 

 

4.2.͏͏͏͏ –͏͏͏͏ Hyperparameter Tuning 

Hyperparameter͏͏͏͏ tuning͏͏͏͏ played͏͏͏͏ an͏͏͏͏ important͏͏͏͏ role͏͏͏͏ in͏͏͏͏ improving͏͏͏͏ model͏͏͏͏ performance͏͏͏͏ for͏͏͏͏ the͏͏͏͏ 

task,͏͏͏͏ especially͏͏͏͏ given͏͏͏͏ the͏͏͏͏ risk͏͏͏͏ of͏͏͏͏ overfitting͏͏͏͏ following͏͏͏͏ SMOTE͏͏͏͏ application.͏͏͏͏  

 

For͏͏͏͏ RF,͏͏͏͏͏͏͏͏͏͏ the͏͏͏͏ grid͏͏͏͏ search͏͏͏͏ conducted͏͏͏͏ used͏͏͏͏ a͏͏͏͏ cost-sensitive͏͏͏͏ 3-fold͏͏͏͏ cross-validation͏͏͏͏ opposed͏͏͏͏ to͏͏͏͏ 5-

fold,͏͏͏͏ due͏͏͏͏ to͏͏͏͏ the͏͏͏͏ size͏͏͏͏ of͏͏͏͏ the͏͏͏͏ dataset.͏͏͏͏ Parameters͏͏͏͏ tuned͏͏͏͏ include͏͏͏͏ “max_depth”͏͏͏͏ (set͏͏͏͏ to͏͏͏͏ 3͏͏͏͏͏͏ and͏͏͏͏ 5)͏͏͏͏ 

to͏͏͏͏ prevent͏͏͏͏ overly͏͏͏͏ complex͏͏͏͏ trees,͏͏͏͏ “min_samples_leaf”͏͏͏͏ (5,͏͏͏͏ 10)͏͏͏͏ to͏͏͏͏ control͏͏͏͏ leaf͏͏͏͏ node͏͏͏͏ purity,͏͏͏͏ and͏͏͏͏ 

“class_weight”͏͏͏͏ to͏͏͏͏ assign͏͏͏͏ a͏͏͏͏ higher͏͏͏͏ penalty͏͏͏͏ to͏͏͏͏ misclassified͏͏͏͏ fraud͏͏͏͏ cases. 

 

XGBoost͏͏͏͏ utilised͏͏͏͏ manual͏͏͏͏ parameterisation,͏͏͏͏ a͏͏͏͏ trade-off͏͏͏͏ made͏͏͏͏ to͏͏͏͏ increase͏͏͏͏ the͏͏͏͏ run-time͏͏͏͏ speed͏͏͏͏ 

of͏͏͏͏ the͏͏͏͏ model.͏͏͏͏ The͏͏͏͏ “scale_pos_weight”͏͏͏͏ (10)͏͏͏͏ directly͏͏͏͏ counteracted͏͏͏͏ the͏͏͏͏ large͏͏͏͏ class͏͏͏͏ imbalance͏͏͏͏ 

and͏͏͏͏ reflected͏͏͏͏ the͏͏͏͏ post-SMOTE͏͏͏͏ distribution,͏͏͏͏ while͏͏͏͏ conservative͏͏͏͏ values͏͏͏͏ for͏͏͏͏ “max_depth”͏͏͏͏ (2),͏͏͏͏ 

“learning_rate”͏͏͏͏ (0.05)͏͏͏͏ and͏͏͏͏ “gamma”͏͏͏͏ (0.3)͏͏͏͏ reduced͏͏͏͏ model͏͏͏͏ complexity͏͏͏͏ and͏͏͏͏ regularised͏͏͏͏ 

learning.͏͏͏͏ This͏͏͏͏ approach͏͏͏͏ reflects͏͏͏͏ best͏͏͏͏ practices͏͏͏͏ in͏͏͏͏ binary͏͏͏͏ classification,͏͏͏͏ where͏͏͏͏ tuning͏͏͏͏ must͏͏͏͏ 

balance͏͏͏͏ sensitivity͏͏͏͏ to͏͏͏͏ minority͏͏͏͏ patterns͏͏͏͏ and͏͏͏͏ generalisability͏͏͏͏ to͏͏͏͏ unseen͏͏͏͏ data͏͏͏͏ (Chen͏͏͏͏ and͏͏͏͏ 

Guestrin,͏͏͏͏ 2016).͏͏͏͏ Notably,͏͏͏͏ the͏͏͏͏ decision͏͏͏͏ threshold͏͏͏͏ was͏͏͏͏ adjusted͏͏͏͏ to͏͏͏͏ 0.9͏͏͏͏͏͏ after͏͏͏͏ precision-recall͏͏͏͏ 

analysis͏͏͏͏ showed͏͏͏͏ this͏͏͏͏ reduced͏͏͏͏ false͏͏͏͏ positives͏͏͏͏ by͏͏͏͏ 41%͏͏͏͏ with͏͏͏͏ only͏͏͏͏ a͏͏͏͏ 6%͏͏͏͏ recall͏͏͏͏ trade-off. 
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5.͏͏͏͏ Results͏͏͏͏ and͏͏͏͏ Comparison 

 

5.1.͏͏͏͏ –͏͏͏͏ Performance͏͏͏͏ Overview 

As͏͏͏͏ previously͏͏͏͏ mentioned,͏͏͏͏ accuracy͏͏͏͏ is͏͏͏͏ rendered͏͏͏͏ an͏͏͏͏ insufficient͏͏͏͏ metric͏͏͏͏ with͏͏͏͏ this͏͏͏͏ dataset,͏͏͏͏ hence,͏͏͏͏ 

the͏͏͏͏ performance͏͏͏͏ of͏͏͏͏ models͏͏͏͏ has͏͏͏͏ been͏͏͏͏ evaluated͏͏͏͏ using͏͏͏͏ recall,͏͏͏͏ precision,͏͏͏͏ and͏͏͏͏ AUC-ROC.͏͏͏͏ The͏͏͏͏ 

results͏͏͏͏ are͏͏͏͏ summarised͏͏͏͏ below͏͏͏͏ in͏͏͏͏ Figure͏͏͏͏ 5a. 

 

 

 

 

 

Figure͏͏͏͏ 5a͏͏͏͏ –͏͏͏͏ Model͏͏͏͏ Comparison͏͏͏͏ Table͏͏͏͏ (Precision,͏͏͏͏ Recall,͏͏͏͏ and͏͏͏͏ False͏͏͏͏ Positive͏͏͏͏ Count) 

 

LR͏͏͏͏ achieved͏͏͏͏ the͏͏͏͏ highest͏͏͏͏ recall͏͏͏͏ (0.791),͏͏͏͏ indicating͏͏͏͏ strong͏͏͏͏ sensitivity͏͏͏͏ to͏͏͏͏ fraud͏͏͏͏ instances.͏͏͏͏ 

However,͏͏͏͏ this͏͏͏͏ did͏͏͏͏ come͏͏͏͏ at͏͏͏͏ the͏͏͏͏ cost͏͏͏͏ of͏͏͏͏ precision͏͏͏͏ (0.525),͏͏͏͏ producing͏͏͏͏ 106͏͏͏͏͏͏ false͏͏͏͏ positives.͏͏͏͏ This͏͏͏͏ 

reflects͏͏͏͏ a͏͏͏͏ tendency͏͏͏͏ to͏͏͏͏ over-flag͏͏͏͏ potential͏͏͏͏ fraud,͏͏͏͏ which͏͏͏͏ would͏͏͏͏ introduce͏͏͏͏ additional͏͏͏͏ operational͏͏͏͏ 

costs͏͏͏͏ for͏͏͏͏ checks,͏͏͏͏ however,͏͏͏͏ it͏͏͏͏ may͏͏͏͏ be͏͏͏͏ acceptable͏͏͏͏ in͏͏͏͏ high-risk͏͏͏͏ financial͏͏͏͏ contexts.͏͏͏͏  

 

XGB͏͏͏͏ delivered͏͏͏͏ the͏͏͏͏ best͏͏͏͏ precision͏͏͏͏ (0.631)͏͏͏͏ while͏͏͏͏ maintaining͏͏͏͏ good recall͏͏͏͏ (0.750),͏͏͏͏ resulting͏͏͏͏ in͏͏͏͏ 

the͏͏͏͏ fewest͏͏͏͏ false͏͏͏͏ positives͏͏͏͏ (65).͏͏͏͏ This͏͏͏͏ suggests͏͏͏͏ the͏͏͏͏ best͏͏͏͏ balance͏͏͏͏ between͏͏͏͏ fraud͏͏͏͏ capture͏͏͏͏ and͏͏͏͏ false͏͏͏͏ 

alarm͏͏͏͏ minimisation.͏͏͏͏  

 

RF͏͏͏͏ mirrored͏͏͏͏ XGB’s͏͏͏͏ recall͏͏͏͏ (0.750)͏͏͏͏ but͏͏͏͏ had͏͏͏͏ significantly͏͏͏͏ lower͏͏͏͏ precision͏͏͏͏ (0.498),͏͏͏͏ generating͏͏͏͏ more͏͏͏͏ 

false͏͏͏͏ alarms͏͏͏͏ (112).͏͏͏͏ This͏͏͏͏ was͏͏͏͏ still͏͏͏͏ strong͏͏͏͏ and͏͏͏͏ exhibits͏͏͏͏ the͏͏͏͏ ensemble͏͏͏͏ method’s͏͏͏͏ effectiveness͏͏͏͏ at͏͏͏͏ 

capturing͏͏͏͏ complex͏͏͏͏ patterns,͏͏͏͏ but͏͏͏͏ suggests͏͏͏͏ XGB’s͏͏͏͏ gradient͏͏͏͏ boosting͏͏͏͏ better͏͏͏͏ generalised͏͏͏͏ under͏͏͏͏ 

SMOTE-induced͏͏͏͏ oversampling. 

 

In͏͏͏͏ contrast,͏͏͏͏ GNB͏͏͏͏ underperformed͏͏͏͏ significantly͏͏͏͏ in͏͏͏͏ precision͏͏͏͏ (0.056),͏͏͏͏ creating͏͏͏͏ over͏͏͏͏ 1,900͏͏͏͏͏͏ false͏͏͏͏ 

positives,͏͏͏͏ despite͏͏͏͏ a͏͏͏͏ strong͏͏͏͏ recall͏͏͏͏ of͏͏͏͏ 0.777.͏͏͏͏ Its͏͏͏͏ naïve͏͏͏͏ independence͏͏͏͏ assumption͏͏͏͏ likely͏͏͏͏ negatively͏͏͏͏ 

impacted͏͏͏͏ learning͏͏͏͏ in͏͏͏͏ a͏͏͏͏ PCA-transformed͏͏͏͏ feature͏͏͏͏ space,͏͏͏͏ where͏͏͏͏ feature͏͏͏͏ interactions͏͏͏͏ are͏͏͏͏ 
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encoded͏͏͏͏ in͏͏͏͏ orthogonal͏͏͏͏ components.͏͏͏͏ While͏͏͏͏ conceptually͏͏͏͏ valuable͏͏͏͏ as͏͏͏͏ a͏͏͏͏ benchmark,͏͏͏͏ its͏͏͏͏ 

application͏͏͏͏ in͏͏͏͏ real-world͏͏͏͏ fraud͏͏͏͏ settings͏͏͏͏ would͏͏͏͏ be͏͏͏͏ impractical. 

 

5.2.͏͏͏͏ –͏͏͏͏ ROC͏͏͏͏ Curve͏͏͏͏ Comparison 

All͏͏͏͏ models͏͏͏͏ had͏͏͏͏ strong͏͏͏͏ AUC-ROC͏͏͏͏ values,͏͏͏͏ with͏͏͏͏ LR͏͏͏͏ and͏͏͏͏ XGB͏͏͏͏ both͏͏͏͏ achieving͏͏͏͏ 0.96,͏͏͏͏ RF͏͏͏͏ closely͏͏͏͏ 

followed͏͏͏͏ at͏͏͏͏ 0.95,͏͏͏͏ and͏͏͏͏ GNB͏͏͏͏ trailed͏͏͏͏ slightly͏͏͏͏ at͏͏͏͏ 0.94͏͏͏͏͏͏ (Figure͏͏͏͏ 5b).͏͏͏͏ These͏͏͏͏ high͏͏͏͏ scores͏͏͏͏ suggest͏͏͏͏ that͏͏͏͏ 

the͏͏͏͏ models͏͏͏͏ successfully͏͏͏͏ discriminate͏͏͏͏ between͏͏͏͏ fraud͏͏͏͏ and͏͏͏͏ genuine͏͏͏͏ classes,͏͏͏͏ even͏͏͏͏ with͏͏͏͏ the͏͏͏͏ 

presence͏͏͏͏ of͏͏͏͏ synthetic͏͏͏͏ oversampling.͏͏͏͏ Notably,͏͏͏͏ the͏͏͏͏ ROC͏͏͏͏ curves͏͏͏͏ show͏͏͏͏ an͏͏͏͏ advantage͏͏͏͏ for͏͏͏͏ XGB͏͏͏͏ and͏͏͏͏ 

LR͏͏͏͏ in͏͏͏͏ the͏͏͏͏ low͏͏͏͏ false͏͏͏͏ positive͏͏͏͏ rate͏͏͏͏ region,͏͏͏͏ which͏͏͏͏ is͏͏͏͏ particularly͏͏͏͏ important͏͏͏͏ in͏͏͏͏ high-stakes͏͏͏͏ 

classification͏͏͏͏ problems͏͏͏͏ like͏͏͏͏ fraud͏͏͏͏ detection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure͏͏͏͏ 5b͏͏͏͏ –͏͏͏͏ ROC͏͏͏͏ Curve͏͏͏͏ Comparison͏͏͏͏ Diagram͏͏͏͏ Across͏͏͏͏ All͏͏͏͏ Models 

 

5.3.͏͏͏͏ –͏͏͏͏ Precision-Recall͏͏͏͏ Curve͏͏͏͏ Comparison 

Precision-recall͏͏͏͏ curves͏͏͏͏ (Figure͏͏͏͏ 5c)͏͏͏͏ further͏͏͏͏ illustrate͏͏͏͏ the͏͏͏͏ class͏͏͏͏ sensitivity.͏͏͏͏ XGB͏͏͏͏ and͏͏͏͏ RF͏͏͏͏ exhibit͏͏͏͏ 

better͏͏͏͏ average͏͏͏͏ precision͏͏͏͏ (0.65͏͏͏͏ and͏͏͏͏ 0.66,͏͏͏͏ respectively),͏͏͏͏ while͏͏͏͏ GNB͏͏͏͏ flattens͏͏͏͏ quickly,͏͏͏͏ indicative͏͏͏͏ 

of͏͏͏͏ early͏͏͏͏ precision͏͏͏͏ collapse.͏͏͏͏ LR͏͏͏͏ again͏͏͏͏ outperforms͏͏͏͏ on͏͏͏͏ the͏͏͏͏ recall-heavy͏͏͏͏ segments,͏͏͏͏ consistent͏͏͏͏ 

with͏͏͏͏ its͏͏͏͏ recall-centric͏͏͏͏ performance.͏͏͏͏ The͏͏͏͏ combined͏͏͏͏ PR͏͏͏͏ plot͏͏͏͏ affirms͏͏͏͏ XGB’s͏͏͏͏ proficiency͏͏͏͏ in͏͏͏͏ 

retaining͏͏͏͏ precision͏͏͏͏ across͏͏͏͏ a͏͏͏͏ wide͏͏͏͏ recall͏͏͏͏ range,͏͏͏͏ which͏͏͏͏ justifies͏͏͏͏ its͏͏͏͏ use͏͏͏͏ in͏͏͏͏ areas͏͏͏͏ that͏͏͏͏ prioritise͏͏͏͏ 

both͏͏͏͏ the͏͏͏͏ reduction͏͏͏͏ of͏͏͏͏ fraud͏͏͏͏ and͏͏͏͏ alert͏͏͏͏ fatigue͏͏͏͏ minimisation. 
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Figure͏͏͏͏ 5c͏͏͏͏ –͏͏͏͏ PR͏͏͏͏ Curve͏͏͏͏ Comparison͏͏͏͏ Diagram͏͏͏͏ Across͏͏͏͏ All͏͏͏͏ Models 

 

5.4.͏͏͏͏ –͏͏͏͏ Practitioner͏͏͏͏ Recommendations 

For͏͏͏͏ the͏͏͏͏ practical͏͏͏͏ implementation͏͏͏͏ of͏͏͏͏ fraud͏͏͏͏ detection͏͏͏͏ systems,͏͏͏͏ XGB͏͏͏͏ is͏͏͏͏ the͏͏͏͏ most͏͏͏͏ effective͏͏͏͏ choice,͏͏͏͏ 

characterised͏͏͏͏ by͏͏͏͏ its͏͏͏͏ strong͏͏͏͏ precision,͏͏͏͏ competitive͏͏͏͏ recall,͏͏͏͏ and͏͏͏͏ low͏͏͏͏ false͏͏͏͏ positive͏͏͏͏ rate,͏͏͏͏ which͏͏͏͏ 

collectively͏͏͏͏ minimise͏͏͏͏ customer͏͏͏͏ disruption͏͏͏͏ while͏͏͏͏ effectively͏͏͏͏ detecting͏͏͏͏ fraud.͏͏͏͏ LR͏͏͏͏ is͏͏͏͏ 

recommended͏͏͏͏ when͏͏͏͏ maximising͏͏͏͏ recall͏͏͏͏ is͏͏͏͏ essential,͏͏͏͏ although͏͏͏͏ it͏͏͏͏ may͏͏͏͏ necessitate͏͏͏͏ additional͏͏͏͏ 

filtering͏͏͏͏ to͏͏͏͏ address͏͏͏͏ false͏͏͏͏ positives.͏͏͏͏ RF͏͏͏͏ provides͏͏͏͏ a͏͏͏͏ reliable͏͏͏͏ alternative,͏͏͏͏ known͏͏͏͏ for͏͏͏͏ its͏͏͏͏ consistent͏͏͏͏ 

performance,͏͏͏͏ albeit͏͏͏͏ with͏͏͏͏ a͏͏͏͏ decrease͏͏͏͏ in͏͏͏͏ computational͏͏͏͏ efficiency.͏͏͏͏ GNB͏͏͏͏ performed͏͏͏͏ poorly͏͏͏͏ 

overall͏͏͏͏ despite͏͏͏͏ the͏͏͏͏ strong͏͏͏͏ recall,͏͏͏͏ as͏͏͏͏ extremely͏͏͏͏ low͏͏͏͏ precision͏͏͏͏ limits͏͏͏͏ any͏͏͏͏ practical͏͏͏͏ utility.͏͏͏͏ In͏͏͏͏ fraud͏͏͏͏ 

detection,͏͏͏͏ high͏͏͏͏ recall͏͏͏͏ is͏͏͏͏ very͏͏͏͏ important,͏͏͏͏ but͏͏͏͏ it’s͏͏͏͏ also͏͏͏͏ important͏͏͏͏ to͏͏͏͏ balance͏͏͏͏ precision,͏͏͏͏ since͏͏͏͏ 

excessive͏͏͏͏ false͏͏͏͏ positives͏͏͏͏ can͏͏͏͏ overload͏͏͏͏ investigation͏͏͏͏ teams͏͏͏͏ and͏͏͏͏ inconvenience͏͏͏͏ customers͏͏͏͏ 

through͏͏͏͏ card͏͏͏͏ freezing. 
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6.͏͏͏͏ Reflection on Challenges and Limitations 

 

6.1.͏͏͏͏ –͏͏͏͏ Independent͏͏͏͏ Development͏͏͏͏ and͏͏͏͏ Technical͏͏͏͏ Growth 

My͏͏͏͏ approach͏͏͏͏ for͏͏͏͏ this͏͏͏͏ project͏͏͏͏ was͏͏͏͏ to͏͏͏͏ construct͏͏͏͏ each͏͏͏͏ aspect͏͏͏͏ of͏͏͏͏ the͏͏͏͏ models͏͏͏͏ independently,͏͏͏͏ as͏͏͏͏ I͏͏͏͏ 

plan͏͏͏͏ to͏͏͏͏ pursue͏͏͏͏ a͏͏͏͏ career͏͏͏͏ in͏͏͏͏ analytics͏͏͏͏ post-graduation.͏͏͏͏ My͏͏͏͏ focus͏͏͏͏ was͏͏͏͏ on͏͏͏͏ thoroughly͏͏͏͏ 

understanding͏͏͏͏ the͏͏͏͏ coding͏͏͏͏ process͏͏͏͏ rather͏͏͏͏ than͏͏͏͏ relying͏͏͏͏ on͏͏͏͏ Kaggle’s͏͏͏͏ pre-existing͏͏͏͏ code͏͏͏͏ or͏͏͏͏ 

depending͏͏͏͏ on͏͏͏͏ AI͏͏͏͏ tools.͏͏͏͏ Hence,͏͏͏͏ I͏͏͏͏ implemented͏͏͏͏ all͏͏͏͏ components͏͏͏͏ from͏͏͏͏ scratch.͏͏͏͏ While͏͏͏͏ AI͏͏͏͏ was͏͏͏͏ used͏͏͏͏ 

sparingly͏͏͏͏ to͏͏͏͏ troubleshoot͏͏͏͏ syntax͏͏͏͏ issues,͏͏͏͏ all͏͏͏͏ conceptual͏͏͏͏ understanding,͏͏͏͏ design͏͏͏͏ choices,͏͏͏͏ and͏͏͏͏ 

coding͏͏͏͏ logic͏͏͏͏ were͏͏͏͏ developed͏͏͏͏ through͏͏͏͏ self-learning.͏͏͏͏ While͏͏͏͏ extremely͏͏͏͏ time-consuming,͏͏͏͏ this͏͏͏͏ 

approach͏͏͏͏ greatly͏͏͏͏ assisted͏͏͏͏ in͏͏͏͏ building͏͏͏͏ from͏͏͏͏ the͏͏͏͏ basics͏͏͏͏ learned͏͏͏͏ in͏͏͏͏ semester͏͏͏͏ one.͏͏͏͏  

 

For͏͏͏͏ instance,͏͏͏͏ manually͏͏͏͏ implementing͏͏͏͏ SMOTE͏͏͏͏ revealed͏͏͏͏ how͏͏͏͏ oversampling͏͏͏͏ can͏͏͏͏ distort͏͏͏͏ feature͏͏͏͏ 

distributions͏͏͏͏ if͏͏͏͏ not͏͏͏͏ carefully͏͏͏͏ controlled,͏͏͏͏ and͏͏͏͏ debugging͏͏͏͏ the͏͏͏͏ stratified͏͏͏͏ split͏͏͏͏ showed͏͏͏͏ me͏͏͏͏ how͏͏͏͏ 

easily͏͏͏͏ rare͏͏͏͏ fraud͏͏͏͏ cases͏͏͏͏ can͏͏͏͏ be͏͏͏͏ lost͏͏͏͏ in͏͏͏͏ random͏͏͏͏ sampling.͏͏͏͏ These͏͏͏͏ insights͏͏͏͏ aren’t͏͏͏͏ always͏͏͏͏ obvious͏͏͏͏ 

when͏͏͏͏ using͏͏͏͏ pre-built͏͏͏͏ code,͏͏͏͏ and͏͏͏͏ the͏͏͏͏ struggle͏͏͏͏ to͏͏͏͏ solve͏͏͏͏ these͏͏͏͏ problems͏͏͏͏ on͏͏͏͏ my͏͏͏͏ own͏͏͏͏ gave͏͏͏͏ me͏͏͏͏ a͏͏͏͏ 

much͏͏͏͏ deeper͏͏͏͏ understanding͏͏͏͏ of͏͏͏͏ the͏͏͏͏ nuances͏͏͏͏ involved͏͏͏͏ in͏͏͏͏ building͏͏͏͏ ML͏͏͏͏ models. 

 

6.2.͏͏͏͏ –͏͏͏͏ Model͏͏͏͏ Performance 

In͏͏͏͏ reviewing͏͏͏͏ model͏͏͏͏ performance,͏͏͏͏ I͏͏͏͏ recognise͏͏͏͏ my͏͏͏͏ results,͏͏͏͏ though͏͏͏͏ competitive,͏͏͏͏ did͏͏͏͏ not͏͏͏͏ reach͏͏͏͏ 

the͏͏͏͏ same͏͏͏͏ level͏͏͏͏ as͏͏͏͏ other͏͏͏͏ publicly͏͏͏͏ available͏͏͏͏ solutions͏͏͏͏ found͏͏͏͏ in͏͏͏͏ online͏͏͏͏ repositories͏͏͏͏ (Farayola,͏͏͏͏ 

2023;͏͏͏͏ Garg,͏͏͏͏ 2017;͏͏͏͏ Rutecki,͏͏͏͏ 2022a;͏͏͏͏ Rutecki,͏͏͏͏ 2022b).͏͏͏͏ These͏͏͏͏ sources͏͏͏͏ frequently͏͏͏͏ achieved͏͏͏͏ near-

perfect͏͏͏͏ recall͏͏͏͏ through͏͏͏͏ extensive͏͏͏͏ hyperparameter͏͏͏͏ tuning,͏͏͏͏ ensembling,͏͏͏͏ or͏͏͏͏ hybrid͏͏͏͏ resampling͏͏͏͏ 

methods.͏͏͏͏ However,͏͏͏͏ my͏͏͏͏ goal͏͏͏͏ was͏͏͏͏ not͏͏͏͏ to͏͏͏͏ replicate͏͏͏͏ these,͏͏͏͏ but͏͏͏͏ to͏͏͏͏ build͏͏͏͏ a͏͏͏͏ solid,͏͏͏͏ explainable͏͏͏͏ system͏͏͏͏ 

with͏͏͏͏ the͏͏͏͏ use͏͏͏͏ of͏͏͏͏ my͏͏͏͏ own͏͏͏͏ code͏͏͏͏ learning͏͏͏͏ and͏͏͏͏ understanding.͏͏͏͏  

 

Designing͏͏͏͏ my͏͏͏͏ project͏͏͏͏ to͏͏͏͏ incorporate͏͏͏͏ experimentation͏͏͏͏ with͏͏͏͏ both͏͏͏͏ simple͏͏͏͏ (LR,͏͏͏͏ GNB)͏͏͏͏ and͏͏͏͏ complex͏͏͏͏ 

(XGB,͏͏͏͏ RF)͏͏͏͏ models͏͏͏͏ allowed͏͏͏͏ me͏͏͏͏ to͏͏͏͏ analyse͏͏͏͏ how͏͏͏͏ model͏͏͏͏ structure͏͏͏͏ can͏͏͏͏ influence͏͏͏͏ performance͏͏͏͏ 

under͏͏͏͏ highly͏͏͏͏ imbalanced͏͏͏͏ data.͏͏͏͏ One͏͏͏͏ important͏͏͏͏ insight͏͏͏͏ gained͏͏͏͏ was͏͏͏͏ recognising͏͏͏͏ the͏͏͏͏ impact͏͏͏͏ 

synthetic͏͏͏͏ data͏͏͏͏ from͏͏͏͏ SMOTE͏͏͏͏ had͏͏͏͏ on͏͏͏͏ classifiers͏͏͏͏ that͏͏͏͏ assume͏͏͏͏ feature͏͏͏͏ independence,͏͏͏͏ which͏͏͏͏ 

became͏͏͏͏ apparent͏͏͏͏ in͏͏͏͏ GNB’s͏͏͏͏ disappointing͏͏͏͏ precision͏͏͏͏ despite͏͏͏͏ high͏͏͏͏ recall. 
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6.3.͏͏͏͏ –͏͏͏͏ Limitations͏͏͏͏ and͏͏͏͏ Future͏͏͏͏ Directions 

While͏͏͏͏ building͏͏͏͏ the͏͏͏͏ fraud͏͏͏͏ detection͏͏͏͏ system͏͏͏͏ from͏͏͏͏ scratch͏͏͏͏ strengthened͏͏͏͏ my͏͏͏͏ technical͏͏͏͏ skills,͏͏͏͏ I͏͏͏͏ 

recognise͏͏͏͏ several͏͏͏͏ limitations͏͏͏͏ in͏͏͏͏ hindsight.͏͏͏͏ The͏͏͏͏ fixed͏͏͏͏ decision͏͏͏͏ threshold͏͏͏͏ on͏͏͏͏ XGB͏͏͏͏ of͏͏͏͏ 0.9͏͏͏͏͏͏ improved͏͏͏͏ 

model͏͏͏͏ performance͏͏͏͏ results,͏͏͏͏ but͏͏͏͏ would͏͏͏͏ be͏͏͏͏ inadequate͏͏͏͏ in͏͏͏͏ a͏͏͏͏ real-world͏͏͏͏ setting,͏͏͏͏ where͏͏͏͏ fraud͏͏͏͏ 

patterns͏͏͏͏ are͏͏͏͏ constantly͏͏͏͏ changing.͏͏͏͏ A͏͏͏͏ threshold͏͏͏͏ that͏͏͏͏ can͏͏͏͏ adapt͏͏͏͏ to͏͏͏͏ new͏͏͏͏ transaction͏͏͏͏ trends͏͏͏͏ would͏͏͏͏ 

be͏͏͏͏ far͏͏͏͏ more͏͏͏͏ efficient͏͏͏͏ in͏͏͏͏ the͏͏͏͏ long͏͏͏͏ run.͏͏͏͏  

 

Additionally,͏͏͏͏ my͏͏͏͏ SMOTE͏͏͏͏ configuration͏͏͏͏ was͏͏͏͏ fixed͏͏͏͏ at͏͏͏͏ a͏͏͏͏ 10%͏͏͏͏ minority͏͏͏͏ ratio.͏͏͏͏ In͏͏͏͏ future,͏͏͏͏ I͏͏͏͏ would͏͏͏͏ 

explore͏͏͏͏ hybrid͏͏͏͏ sampling͏͏͏͏ techniques͏͏͏͏ (e.g.͏͏͏͏ SMOTE͏͏͏͏ +͏͏͏͏ Tomek͏͏͏͏ links͏͏͏͏ (Rutecki,͏͏͏͏ 2022b))͏͏͏͏ or͏͏͏͏ cost-

sensitive͏͏͏͏ learning͏͏͏͏ frameworks,͏͏͏͏ which͏͏͏͏ could͏͏͏͏ help͏͏͏͏ to͏͏͏͏ mitigate͏͏͏͏ the͏͏͏͏ introduction͏͏͏͏ of͏͏͏͏ synthetic͏͏͏͏ 

noise͏͏͏͏ in͏͏͏͏ the͏͏͏͏ high-dimensional͏͏͏͏ PCA͏͏͏͏ space. 

 

Performance was analysed based on a single train/test split without the incorporation of any 

probability calibration. In the future, implementation with a rolling-window cross-validation 

could reveal temporal stability (Bergmeir and Benítez, 2012), and techniques like Platt scaling 

or isotonic regression could ensure that predicted probabilities remain well-calibrated before 

thresholding (Niculescu-Mizil and Caruana, 2005). 

 

7.͏͏͏͏ -͏͏͏͏ Conclusion 

 

This project did a comparative analysis of four machine learning classifiers to detect fraud in 

a highly imbalanced dataset. The process went through data cleaning, targeted feature 

handling, and the use of SMOTE and hyperparameter tuning, then each model was evaluated 

on its ability to prioritise recall while minimising false alarms. XGBoost was the most balanced 

performer, while Logistic Regression and Random Forest showed different strengths in recall 

and interpretability. Gaussian Naïve Bayes, though conceptually useful, did not perform well 

comparatively and exhibited the risks of its overly simple assumptions in a high-dimensional 

fraud problem. This experience emphasised the importance of understanding not only the 

results produced by models but also the fundamental processes and compromises involved. 

Future improvements could incorporate dynamic thresholding and more advanced ensemble 

methods. 
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Link to the code: HERE 

Link to the dataset: HERE 
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